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Abstract. The Noether-type point transformation symmetry of the one-dimensional single- 
particle system is investigated systematically. All four possible potentials which possess 
symmetry larger than time translation have been found. The connection between sym- 
metries on the classical level and the quantum level is also established. 

1. Introduction 

The symmetry group of a specific single-particle system has been studied by many 
authors. Lie (1888) first obtained the generators of the invariance group of a free 
particle. For a harmonic oscillator, there are several papers contributing to the analysis 
of a symmetry group on both the classical and the quantum mechanics levels (Anderson 
and Davison 1974, Wulfman and Wybourne 1976, Lutzky 1978a, b). 

It is well known that all stationary conservative systems possess the symmetry of 
time translation, and that the corresponding conserved quantity is the energy of the 
system. In this paper we refer to this symmetry as a trivial one. Is there any other 
system beyond the free particle and the harmonic oscillator possessing non-trivial 
symmetry, and what symmetry is that? Our purpose is to answer this question. 

In this paper we shall systematically investigate the symmetry group of a one- 
dimensional, stationary, conservative single-particle system. We shall find all poten- 
tials which possess a symmetry bigger than a mere time translation. We shall use 
Lutzky’s formulation of Noether’s theorem (Noether 1918, Gelfand and Fomin 1963, 
Lutzky 1978a, b) because it is very convenient for searching for all Noether-type 
symmetries and their corresponding conserved quantities in a system. Therefore it 
facilitates passage to quantum mechanics. 

In § 2, for B general system (i.e. a particle moving in a time-independent potential) 
we derive a set of equations which the symmetry transformation and the potential 
should satisfy. We also write down the general form of the conserved quantities of such 
a system. In § 3, we prove a symmetry correspondence theorem which relates the 
symmetries on the classical level with those on the quantum level. Section 4 provides 
the most general solution to the problem: four kinds of potentials, the corresponding 
non-trivial Noether-type symmetry and the conserved quantities. We also derive the 
algebra in which the symmetry generators are closed for both the classical level and the 
quantum level. To this end, we give a detailed demonstration of the theorem proven in 
5 3. Finally, we conclude this paper in 8 5 with a discussion of our results. 
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2. Symmetry and the potential equation 

The system we investigate has the following Lagrangian: 

2?=tq’- V(q).  (1) 

Here we have chosen a unit mass for the particle. 
Suppose the action of this system is invariant under certain point transformations; 

we then obtain a symmetry transformation of the system. This symmetry can be 
described by a first extended one-parameter Lie group. The transformation can be 
written in the form 

where e is the group parameter and E is the infinitesimal operator of the first extended 
group 

E(q, 4, t )  = G(q, t )  + (ri  -4&)a /a4  G(q, t )  = 5(4, t ) a l a t  + 77 (4, t )a la4 (3) 

while G is the generator of the one-parameter group (Cohen 1931). The dot here 
denotes a complete time differentiation. 

If the transformation ( 2 )  satisfies the following equation 

E ( 2 )  = -&+f (4) 

@ = (54 - 77)a=wa4 - 5s +f(4, t )  

we obtain a Noether-conserved quantity 

= 5H - 877~ + P V )  +f. ( 5 )  

H=qa9./aq-2?=ip2+ V(q)  p = 4. (6) 

Here f is a function of time and coordinate. H is the Hamiltonian of the system 

For convenience in passing to quantum mechanics, we have already symmetrised the 
expression for the conserved quantity. 

From equations ( l ) ,  (3) and (4) we have the following set of equations: 

5q = 0 5r-277, = O  

In matrix form, we can rewrite equation (7) as follows 

- V5q + q r  - f q  = 0 V(r + 7Vq + f r  = 0. (7) 

S$=O (8) 

Here 5 is a function of time only. 
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Equation (7) can be used for two purposes. Firstly, for a given potential, we can use it 
to find out the corresponding symmetry transformations. Then equation (7) is a set of 
homogeneous linear equations of (6, 7, f). We can apply the superposition principle to 
obtain the total solution, namely, the general solution 4 is a linear combination of all 
linear independent solutions cl/i : 

For every solution rLi, there is a corresponding generator Gi which generates the 
symmetry group on the classical level 

and a corresponding constant of motion 

Qi =ei.H-i(qip+p7i)+fi (14) 

which generates the symmetry group on the quantum level. 
Conversely, for a given symmetry transformation, we can use equation (7) to 

determine the potentials which possess such symmetry. Fortunately, equation (7) can 
help us to determine both the symmetry transformation and the potential simul- 
taneously, so that we can solve the symmetry problem of one-dimensional single- 
particle systems completely. 

3. The symmetry correspondence theorem 

Before we solve equation (7) or (8), we prove a theorem which relates the symmetry 
between classical mechanics and quantum mechanics. 

Firstly, one may check that if two sets of (5, 7, f) 

are the solutions of equation (8) 

s*i = 0 s*j = 0.  (15) 

Then the combination 

is also a solution of equation (8) 

s*jj = 0. (17) 

can be expressed as a linear combination of all linearly independent solutions of 



2810 2 Dongpei 

equation (18) 

k 

More explicitly, 

Here d k  is a constant. The reason for its appearance is that we can only determine f k  up 
to a constant by equation (7) and it does not have any classical effect. Actually, we can 
determine 5 accurately only up to a constant as well, which reflects the fact that any 
stationary system possesses the time translation symmetry, but it can be pinned down by 
the classical symmetry requirement. 

The first two equations of (19) are indeed the integrable condition of the Lie group 

From this, the integrable condition of the first extended Lie group can be easily derived 

Passing to quantum mechanics, we have to use the canonical quantisation condition 
( h  = 1) 

[q, PI = i. (22) 

Direct calculation yields, using equation (19), 

where I is the identity operator. 
Comparing equations (23) and (20), we may formulate the following symmetry 

correspondence theorem. 'Up to the identity operator, a quantum system possesses the 
same symmetry as the Noether-type symmetry of the same classical system.' 

The reason for the appearance of the identity operator in (23) is obvious: instead of 
an Abelian algebra 

[alat, a/aq] = o (24) 

in the classical case, we have the Heisenberg algebra (22) of quantum mechanics. 

quantities Qi are also conserved in quantum mechanics 
Finally, a similar calculation shows, using equation (7), that the classical conserved 

d aOi 
dt  at  
-Qj = - + i[H, Oj] = 0. 
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4. Potentials and symmetry algebras 

Now we turn to solving equation (7) to find out all possible potentials and their 
corresponding symmetries. 

Equation (7) can first be integrated 

5 = 5 ( t )  77 =%I + T o o )  f = $ & I 2 +  404 + f o ( t ) .  (26) 

Then the pure time functions 5, vo and f o  satisfy the following equation 

(27) vi.+&vqi.+vovq = - z q  1 2 c $ - q i j o - f o .  .’* 

In the trivial case i. = 0 and vo = 0 (i.e. only time translation), V can be any potential. 
For # 0, this equation constrains the form of V. Regarding equation (27) as an 
equation for V, we have a linear, first-order, inhomogeneous differential equation. The 
most general solution is of the form 

V ( q ) = ~ - ; ? / ( q + A ) ~ + ~ 2 ( 4  + A ) 2 + ~ i ( q + A ) + ~ o  (28) 

where A is independent of the coordinate q. The first term is the solution to the 
homogeneous equation, and a-2 will remain a free parameter. The other terms are a 
particular integral; the coefficients ao, a l  and a2 can be fixed by putting (28) back into 
equation (27), which yields a set of equations for transformation functions: 

This set of linear differential equations provides four kinds of solutions. 

4.1.  Linear potential 

a-2 = 0 a2 = 0.  

The potential is 

V =  a l ( q  + A )  +ao. 

The symmetry transformation functions are 

Here A are arbitrary constants (group parameters). 
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We obtain five generators of the Lie group 

which give the following commutative relations 

Corresponding to the symmetry transformations, we have the following constants of 
the motion 

@ I =  t2H1 -Dt +3alt3p +F1 

0 2  = tH1- 4D + &lt2p  + F i  

@3 = H i  - u ~ - A u ~  @4=-p t+q- ta l t2  @'s=-p-a1t. 

( 35 )  

Here the Hamiltonian and dilatation operator are 

Among these conserved quantities only two are independent. In fact, we have the 
relations 

(37) @ -1 2 
3 - 2@5 +a1@4* 

@ -I 
2 - 4(@4@5 + @5@4) 

@ -1 2 
1 - 2@4 

In quantum mechanics the conserved quantities (35) satisfy the following algebra 

This algebra contains an SO(2, 1) as a subalgebra. To show this we choose another 
set of generators Ji (a  is an arbitrary real number) 

J1= a@l -+a-l(@3 + @4) J2 = 0 2  J3 = @ 1 f $a - (@3 + @4) (39) 
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which satisfy the following SO(2 , l )  algebra 

[J1, J Z ]  = -iJ3 [ J 2 ,  J31= iJi [J3 ,  Jl] = iJ2. (40) 

Obviously the Hamiltonian H1 of the system is not the compact generator of this 
subgroup. 

4.2. Oscillator 

This case has been well studied by Lutzky (1978a). The symmetry functions are 

t = A 3 c o s 2 w t + A 4 s i n 2 w t + A o  
7 =-A3[wq+o -1 ( ~ ~ + A w ~ ) ] s i n 2 w t + A ~ [ w q + ~ - ~ ( a ~ + A w ~ ) ] c o s  2wt 

+ A7 cos ut + A s  sin wt 
(43) 

f = - F 2 ( A ~ ~ ~ ~ 2 w t + A 4 s i n 2 w t ) - [ w q + w ~ 1 ( a l + A ~ 2 ) ] ( A ~ s i n ~ t - A s ~ ~ ~ ~ t ) + d  
1 2 2  F2 = w 'q2 + 2q ( U  1 + Aw ') + TA w + ha 1 + a0 + -'(a 1 + A o  2 ) 2  

which give us five generators 

G~ =COS "/at -[wq +w- ' (a l  +Aw2)] sin 2wtalaq 

G2 = sin 2wta/at + [wq + w-'(al + Aw2)] cos 2wtalaq 

G3 = a/at  G~ = COS wta/aq Gs =sin wta/aq. 

These generators close on an algebra 

GI G2 G3 G4 G5 
G1 0 20G3 20G2 wGs wG4 
G2 0 -2wG1 -wG4 wG5 

G3 0 wG5 wG4 
G4 0 0 
G5 0. 

The corresponding conserved quantities read 

Ql = c o ~ 2 w t ( H ~ - F ~ ) + [ ~ D + w - ~ ( a ~ + A w ~ ) p ] s i n  2wt 

0 '=s in2wt(H2-F~)- [wD+w (al+Aw2)p]cos2wt -1 

Q3 = H2- ao+ af /2w2 

Q4 = - p  cos wt - [wq + o-'(al + Aw2)] sin wt 

Q5 = - p  sin wt + [wq + w- ' (a l  + Aw2)] cos wt. 

(44) 

(45) 

They are interrelated by 

Q 1 -1 - 2 ( @ :  - 0:) 0 2  = i(@4@5 + Q5Q.4) Q3 = 3(0: + a:), (47) 
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These conserved quantities provide the following commutative relations on the 
quantum level 

@l @2 0 3  0 4  @ S  

@I 0 2iwQ3 2iw% io@5 iw@q 
0 2  0 -2i00,  -iw@q iw0.5 
@3 0 -iw@ iw04 
@4 0 iw 
@ S  0. 

(48) 

We may see from (48) that the three generators @I,  0 2  and 0 3  form an SO(2 , l )  
subalgebra with the Hamiltonian operator as a compact one. 

4.3.  Centrifugal (centripetal) potential 

a-2 # 0 a2 = 0. (49) 

V = a-z / (q  + A ) ' +  ao. (50 )  

Whenever a-2 is not vanishing, the a1 should be zero. The potential has the form 

The symmetry functions, the classical generators, their commutative relations, the 
conserved quantities, and their algebra are listed as follows: 

( = A z t 2 + A l t + A o  

We may observe an SO(2, 1) symmetry, but the Hamiltonian H3 is not the compact 
operator. 
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4.4. Mixed potential 
1 2  

a-2 # 0 a2=5w # O  

V = a-z/(q + A ) 2  + az(q +A)’+ UO. 

As in the above case, we list all the usual quantities and relations: 

(=A3cos2wt+A4sin2wt+A0 

77 = - A 3 w ( q + A ) s i n 2 w t + A 4 ~ ( q + A ) c o ~ 2 w t  

f = -A3F4 cos 2wt -A4F4 sin 2wt + d 

F 4  = w2q2 + 2Aw2q + 2A2w2 + 
G1 = COS 2wta/at - w(q + A )  sin 2wtalaq 

G2 = sin 2wtalat + w (q +A) cos 2wta/aq 

G3 = a/at 

Gi G2 G3 
GI 0 2wG3 2wG2 
G2 0 -2wG1 
G3 0 

Q1 = cos 2wt(H4 - F4) - w ( D  + Ap) sin 2wt 

Q2 = sin 2wt(H4 - F4) + w (D + Ap) cos 2wt 

@3=H4-a0 

H4=3p2+a-2/(q + A ) 2 + ~ 2 ( q  +A)’+uo 

0 1  0 2  @3 

Q1 0 -2iwQ3 -2iwQ2 
@ 2  0 2iw O1 
@3 0. 

(56) 

(57) 

(59) 

The symmetry group is SO(2, 1) and the Hamiltonian H4 stands as a compact generator. 
In concluding this section, we should like to emphasise that these are all solutions of 

equation (7). One may use another method to check this: expanding (19) in a Laurent 
series about the origin of coordinates, one obtains an infinite set of equations. Solving 
these equations, one obtains the same answers. 

5. Discussion 

Section 4 tells us that all possible potentials which possess symmetry larger than time 
translation fall into four categories: linear (including free particles), oscillator, centri- 
fugal potential and mixed potential. The ensuing symmetry of the classical system is not 
a complete symmetry of the equations of motion, because we are only dealing with the 
Noether-type point transformation symmetry. For example, the free particle possesses 
a symmetry generated by eight generators, but among them only five independent 
combinations lead to constants of motion. The same thing is true for the oscillator. For 
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the centrifugal potential and the mixed potential we cannot apply the usual procedure 
to determine the full symmetry of the equations of motion, because of the singularity of 
the potential. Of course, on the quantum level the symmetry we obtain is a completely 
finite one. 

The obvious symmetry of a stationary system is time translation. The minimal 
non-trivial symmetry, if it exists, is SO(2, 1). This can be seen from § 4. Group theory 
tells us that only the compact generator of SO(2 , l )  can have a discrete spectrum. So in 
the linear and the centrifugal case the Hamiltonian of the system has a continuous 
spectrum only, while in the other two cases where the oscillator is involved the system 
has a discrete energy spectrum. On the classical level this means that in the later two 
cases the particle is subject to periodic motion. 

In 0 4 we have taken u2 to be a positive number. If a2 is negative the symmetry is still 
present, but we need to find another combination of the generators and change the 
trigonometric functions sine and cosine to the hyperbolic functions sinh and cosh. As a 
consequence, the Hamiltonian is no longer a compact generator and thus the quantum 
system possesses a continuous spectrum only. 

The same method can be used to discuss the Noether-symmetry problem of 
three-dimensional isotropic systems. This time we treat the time translation and space 
rotation as the trivial symmetry. Similarly we found that there are four kinds of 
potentials which possess the non-trivial Noether-symmetry : free pgrticle, centrifugal 
potential ( ~ - ~ / r ~ ) ,  harmonic oscillator (zw r ) and mixed potential +;w2r2) .  
The minimum non-trivial symmetry is SO(2, 1) x SO(3) instead of SO(2, 1) in the 
one-dimensional case 

The symmetry larger than the superficial geometric symmetry is called the dynami- 
cal symmetry of a quantum system. This symmetry determines the most important 
properties such as the spacing and degeneracy of the energy level. Since their 
importance is more obvious in the high-dimensional system, we shall not discuss it in 
detail here. 

1 2 2  
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